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Abstract

This paper provides an implicit fluctuation splitting scheme which achieves second-order accuracy in both space and

time, while guaranteeing monotone solutions. The method is based on a dual-time-stepping approach which allows to

separate the spatial and temporal discretizations. A novel distribution scheme of the unsteady-fluctuation term, coupled

with a new limiting procedure for hampering spurious extrema, are the key-ingredients of the remarkable accuracy of

the new method, which is applied with success to both scalar advection problems and unsteady inviscid flows in two

space dimensions.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

During the last decade, a significant research effort has been devoted to the improvement of upwind

schemes for the solution of the Euler and Navier–Stokes equations for compressible flows. Two methods

emerged as promising alternatives to standard finite volume flux difference splitting or flux vector splitting

schemes [1,2], namely, the discontinuous Galerkin (DG) method [3] and the residual distribution or fluctu-
ation splitting (FS) approach [4,5]. They share a very important property, the compactness of the scheme,

which renders them suitable for modern parallel computers. The DG method is a generalization of the
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classical Galerkin finite element method, embedding the solution of the Riemann problem as a model for

propagation phenomena by using a discontinuous solution reconstruction. The FS approach is based on a

continuous reconstruction of the solution, the residual, namely, the flux balance over each computational

cell, being distributed among the vertices of the cell with an upwind bias. Due to such a distribution step,

which can properly mimic the convection of signals regardless of the grid orientation, FS schemes can be
considered truly multidimensional. In the present paper, the FS approach is considered. After the pioneer-

ing work of Roe, Deconinck and their associates [4,6–9], the new methodology was further developed and

applied to solve a wide range of compressible steady flows [10–13]. More recently, following the general

trend of CFD to attack more realistic unsteady flow problems, several attempts at generalizing FS schemes

to the unsteady-flow equations have been proposed [14–19]. Such a goal turned out to be all but straight-

forward, so that different approaches were to be pursued. The simplest choice would be employing the

method of lines which, unfortunately, cannot be successful. In fact, recasting the problem into the varia-

tional formulation, it turns out that, in general, second-order accuracy in space and time cannot be
achieved without employing a suitable consistent mass matrix which, on the other hand, renders the scheme

implicit. Actually, the only way to achieve second-order accuracy using an explicit FS scheme appears to be

the Lax–Wendroff scheme, equivalent to a Taylor–Galerkin discretization with a suitable mass-lumping,

which renders the scheme explicit without affecting its order of accuracy [16]. Such a scheme, being linear

and second-order-accurate, is not positive. First attempts to design monotone FS schemes for unsteady

problems were based on the use of the Lax–Wendroff scheme in conjunction with a flux-corrected transport

(FCT) strategy [20], which allows to recover positivity by modifying the signals sent by each triangle to its

nodes [16,21]. Unfortunately, such schemes have been seen to provide unsatisfactory phase errors due to the
use of the Lax–Wendroff scheme. On the other hand, in [15] a consistent mass matrix formulation was con-

sidered, again employing an FCT procedure applied to the triangle signals, together with the Crank–Nicol-

son scheme. Such an approach lacks robustness and does not allow to reduce the unsteady residual to

machine zero by any iterative procedure. More recently, Csı́k et al. [17] and Abgrall and Mezine [19] have

proposed two different approaches in the framework of the more general space–time residual distribution

schemes, both based on continuous space–time elements. The first authors employ prismatic elements,

whereas the second ones use tetrahedra in the space–time domain. Both methods are implicit and may em-

ploy two layers of cells in the temporal direction in order to achieve unconditional stability. In this way,
nonlinear FS schemes can be extended to space–time elements damping spurious oscillations. Nevertheless,

two drawbacks remain: (i) second-order-accurate nonlinear FS schemes cannot achieve machine zero when

an iterative procedure, such as the Newton method, is employed, as correctly acknowledged in [19]; (ii) the

use of nonlinear positive FS schemes, such as the PSI [4] or the N-modified [19] ones, in low-gradient re-

gions appears to be undesirable since they are clearly more dissipative than linearity preserving linear FS

schemes, such as the LDA one [4]. The aim of this paper is to provide a contribution towards developing a

monotone FS scheme for unsteady flow problems which achieves second-order accuracy in both space and

time. An implicit scheme is proposed which addresses the two issues above while providing improved accu-
racy with respect to the scheme of [16,21]. The scheme, which employs a dual-time-stepping procedure, is

based on two main contributions: (i) a general formulation of the consistent mass matrix; (ii) a new limiting

procedure to achieve monotone solutions. Such a procedure is similar to the FCT one, insofar as it allows

to control the solution, locally, in order to avoid the creation of spurious extrema, and, most importantly, it

is employed at each node, after collecting the residual from the neighbouring elements, instead of at each

triangle. In this way, the limiting procedure does not prevent reducing the residual to machine-zero, a fea-

ture which is fundamental for the use of any iterative solver.

The paper proceeds as follows. The basic FS schemes are briefly reviewed and the FCT strategy, which
allowed for the first time to achieve second-order-accurate monotone unsteady-flow solutions, is explained

in some detail. Particular attention is devoted to the key new features of the proposed approach, namely,

the determination of the generalized mass matrix and the application of the limiting procedure to each node
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rather than to each triangle. The method is described for the simple case of the scalar advection equation

and is then extended to the Euler system. The accuracy of the scheme is verified numerically for both the

scalar equation and the Euler system employing two problems having known exact solutions. Finally, the

method is tested versus two very severe unsteady flows with shocks.
2. Scalar advection equation

In this section multidimensional discretization methods, which are second-order-accurate in space and

time, are presented with reference to the two-dimensional scalar advection equation. After a brief review

of the FS approach and of the four basic FS schemes of interest, the explicit scheme of [16,21] is recalled,

which is based on the combination of two FS schemes with the FCT strategy to control local extrema. Such

an approach represents a well-established technique to design residual distribution schemes for the unsteady
scalar advection equation. Then, a new implicit FS scheme is proposed together with a novel limiting pro-

cedure designed to suppress spurious extrema.

2.1. The FS approach

Consider the two-dimensional linear advection equation for the scalar variable u,
ou
ot

¼ � a
ou
ox

þ b
ou
oy

� �
: ð1Þ
The computational domain is discretized by triangular elements. If the variable u is assumed to vary linearly

over each triangle, the discrete fluctuation, namely, the flux balance over the cell, can be evaluated exactly as:
/T ¼ �
X3
j¼1

kjuj; kj ¼
1

2
k � njlj; ð2Þ
k, nj and lj being the advection velocity, the inward unit normal to the edge opposing node j and its length,

respectively. Fluctuation splitting schemes are obtained by two main steps: (i) the fluctuation is distributed

among the nodes j of each triangle; (ii) the solution at each node i of the computational domain is obtained

by summing up all nodal contributions (arising from the set of triangles sharing node i, Di) as:
unþ1
i ¼ uni þ

Dt
jSij

X
T2Di

bT ;i/T ¼ uni þ
Dt
jSij

X
T2Di

/T ;i; ð3Þ
where Si is the dual cell associated with node i, |Si| is its area, and Dt is the time step. Several FS schemes

have been proposed in the literature, the final goal being a monotone and second-order-accurate scheme, an

impossible task for any linear scheme [4]. Most of such schemes are of the (multidimensional) upwind type:

with reference to Fig. 1, linearly interpolated values of u at the inflow and outflow points of the cell can be

evaluated as
uin ¼
P3

j¼1k
�
j ujP3

j¼1k
�
j

; uout ¼
P3

j¼1k
þ
j ujP3

j¼1k
þ
j

; ð4Þ
where kþj ¼ maxð0; kjÞ; k�j ¼ minð0; kjÞ; then, the fluctuation, /T, can be written in compact form as [22]
/T ¼ �
X3
j¼1

kjuj ¼ �
X3
j¼1

kþj ðuout � uinÞ: ð5Þ
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Fig. 1. Definition of inflow and outflow points: (a) one target case; (b) two target case.
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Eq. (5) shows that the fluctuation is zero when u takes the same values at both the inflow and outflow

points, namely, when it is constant along streamlines. Upwind schemes are obtained by assigning to each

downstream node j, kj P 0, a fraction bT,j of the cell-fluctuation (
P3

j¼1bT ;j ¼ 1 8T , for conservation). In the

trivial configuration 1(a), the entire fluctuation is assigned to the only downstream node and the resulting

FS scheme is both positive and second-order-accurate. For the non-trivial configuration 1(b), different

choices of the distribution coefficients bT,j characterize the different schemes.

For the present study of unsteady inviscid flows, the following FS schemes are of interest:

(1) The N scheme, which is the optimal first-order-accurate upwind scheme [4]:
/N
j ¼ �kþj ðuj � uinÞ: ð6Þ
(2) The non-upwind FS Lax–Wendroff (FS-LW) scheme [22]:
/LW
j ¼ 1

3
þ Dt
2jT j kj

� �
/T ¼ bLW

T ;j /T ; ð7Þ

where |T| is the area of triangle T. Such a scheme is the unique explicit FS scheme with second-order
accuracy in space and time (see, e.g., [16,22]).
(3) The second-order-accurate non-monotone upwind control volume (UCV) scheme [22]:
/UCV
j ¼ 1

3
þ 2

3

kjP3

i¼1jkij

 !
/T ¼ bUCV

T ;j /T : ð8Þ
(4) The second-order-accurate non-monotone low diffusion A (LDA) scheme [22]:
/LDA
j ¼

kþjP3

i¼1k
þ
i

 !
/T ¼ bLDA

T ;j /T : ð9Þ
2.2. The FCT explicit scheme

A first approach [16,21] which has been pursued to design a monotone FS scheme, which is second-

order-accurate in both space and time, is based on the FCT strategy [20], employing the N scheme as

the lower-order (lo) scheme and the FS-LW scheme as the higher-order (ho) one. Such a scheme will be
referred to as FS-FCT scheme. The entire procedure is described here in detail.
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(1) For each node j of each element T:

(a) compute the lower-order contribution ð/N
j Þ, using the N scheme;

(b) compute the higher-order contribution ð/LW
j Þ, using the FS-LW scheme;

(c) compute the anti-diffusive correction (acj):
acj ¼
Dt
jSjj

ð/LW
j � /N

j Þ:
(2) For each node i of the domain compute the lower-order solution:
uloi ¼ uni þ
Dt
jSij

X
T2Di

/N
T ;i:
(3) For each element evaluate the limiter rT for the acj terms which avoids the creation of spurious

extrema as described later.
(4) For each node i of the domain compute the final solution at the new time level n + 1 as
unþ1
i ¼ uloi þ

X
T2Di

rT acTi :
The limiter rT is evaluated as follows.

(1) For each node i of the domain compute the quantities:
u�i ¼
max

min

�
ðuloi ; uni Þ:
(2) For each element T, compute the quantities:
u�T ¼
max

min

�
u�j 8j 2 T :
(3) For each node i compute the quantities:
�u�i ¼
max

min

�
u�T 8T 2 Di;

which represent the extreme values that the solution may assume at node i, i.e., �u�i 6 unþ1
i 6 �uþi .
(4) For each node i compute the quantities:
p�i ¼
X
T2Di

max

min
ð0; acTi Þ;

q�i ¼ �u�i � uloi ;

w�
i ¼

minð1; q�i =p�i Þ if pþi > 0; p�i < 0;

0 if p�i ¼ 0;

�

w�
i are the limiting factors for the antidiffusive correction, acTi , which guarantee that the solution at the

new time level satisfies the lower and upper bounds, �u�i and �uþi , determined at step (3).
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(5) For each node j of each element T, compute
rT
j ¼

wþ
j if acTj P 0;

w�
j if acTj < 0:

(

(6) Finally,
rT ¼ min rT
j 8j 2 T :

Notice that the limiter is the same for all nodes of each triangle, for conservation.
As shown in the result section, the main drawback of such a procedure is its unsatisfactory lagging phase

error due to the use of the FS-LW scheme. In order to overcome such a difficulty, different strategies can be
pursued, such as those based upon space–time residual distribution methods [17,19]. In the present paper,

second-order accuracy for the unsteady problem is achieved by embedding a consistent mass-matrix formu-

lation and a second-order-accurate distribution scheme within a dual-time-stepping procedure using a

three-point backward implicit time integration scheme.

2.3. The proposed implicit scheme

The proposed scheme is based on a second-order-accurate three-level discretization of the time derivative
and a dual-time-stepping technique [23]. Each step in the fictitious time can be written as:
unþ1;kþ1
i ¼ unþ1;k

i � Ds
jSij

X
T2Di

ðaT ;i/t
T � bT ;i/T Þ

nþ1;k
; ð10Þ
where
/t
T ¼

Z
T

ou
ot

dS ¼ jT j
3

X3
i¼1

ou
ot

� �
i

;
ou
ot

� �
i

¼ 3unþ1
i � 4uni þ un�1

i

2Dt
:

Concerning the discretization of the critical unsteady term, /t
T , the distribution coefficients aT,i read:
aT ;i ¼
1

/t
T

Z
Ai

ou
ot

dS; Ai ¼ Si \ T ; areaðAiÞ ¼ jAij: ð11Þ
The integral in the previous equation is to be extended to the portion, Ai, of each triangle T 2 Di (see Fig. 2),

which contributes to the dual cell Si = ¨T 2 Di
Ai, in order to be consistent with the spatial discretization,

thus guaranteeing second-order accuracy in space and time. Such a fraction of the area is uniquely defined

by the steady distribution coefficients, |Ai| = bT,i|T|, being
A

A

A 1

2

3

3

1

2

Fig. 2. Triangle partition.
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�
Z
Ai

k � $u dS ¼ /T

jT j jAij ¼ /T ;i ¼ bT ;i/T : ð12Þ
Combining the temporal and spatial contributions, one has:
aT ;i/
t
T � bT ;i/T ¼

Z
Ai

ou
ot

þ k � $u
� �

dS: ð13Þ
The integral in Eq. (11) is evaluated analytically, the time derivative varying linearly over the triangle,

according to the following procedure:
Z
Ai

ou
ot

dS ¼ ûAi
;t jAij; ð14Þ
where ûAi
;t is the average value of the time derivative over the portion Ai. Such a value can be written as:
ûAi
;t ¼

X3
j¼1

ci;jðu;tÞj; ð15Þ
with
X3
j¼1

ci;j ¼ 1: ð16Þ
Employing Eqs. (14) and (15), one has:
Z
Ai

ou
ot

dS ¼ jT j
X3
j¼1

bT ;ici;jðu;tÞj ¼
X3
j¼1

mi;jðu;tÞj; ð17Þ
where the condition |Ai| = bT,i|T| has been used and mi,j = |T|bT,i ci,j is the mass matrix. Since
Z
T

ou
ot

dS ¼ jT j
3

X3
j¼1

ðu;tÞj ð18Þ
and
 Z
T

ou
ot

dS ¼
X3
i¼1

Z
Ai

ou
ot

dS ¼ jT j
X3
i¼1

X3
j¼1

bT ;ici;jðu;tÞj; ð19Þ
it follows that
X3
i¼1

bT ;ici;j ¼
1

3
: ð20Þ
Eqs. (16) and (20) are the six conditions to be satisfied by the nine unknowns ci,j to achieve second-order

accuracy. One possible strategy to close the problem, which has been proposed in [18], consists in dividing

each triangle into three areas, |Ai| = |T|/3, employing the medians. Therefore, integrating exactly Eq. (14)
one obtains:
ci;i ¼
22

36
and ci;j ¼

7

36
; ð21Þ
and second-order accuracy is obtained employing bT,i = 1/3. Such a centred scheme is used in [18], where

artificial dissipation is added for stability.
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8 P. De Palma et al. / Journal of Computational Physics 208 (2005) 1–33
In the present paper a different approach is taken. The conditions needed to close the problem are deter-

mined so as to guarantee that in the two-target case (shown in Fig. 1(b)) the unsteady term is distributed

only between the downstream nodes according to Eq. (11). Let us consider the triangle in Fig. 3 in which

the spatial fluctuation is distributed between nodes 1 and 2. Such a triangle is divided into two areas,

|A1| = bT,1|T| and |A2| = bT,2|T|. The average value of u,t over A1 is given as
ûA1
;t ¼ ðu;tÞ1 þ ðu;tÞP þ ðu;tÞ3

3
; ð22Þ
where (u,t)P is the value at point P on the outflow edge 1–2:
ðu;tÞP ¼ jA2jðu;tÞ1 þ jA1jðu;tÞ2
jT j ¼ bT ;2ðu;tÞ1 þ bT ;1ðu;tÞ2: ð23Þ
Substituting Eq. (23) in Eq. (22), one has:
ûA1
;t ¼

2� bT ;1

3
ðu;tÞ1 þ

1� bT ;2

3
ðu;tÞ2 þ

1

3
ðu;tÞ3: ð24Þ
Generalizing the coefficients of the three terms in Eq. (24), the coefficients in Eq. (15) are seen to be:
ci;i ¼
2� bT ;i

3
; ci;j ¼

1� bT ;j

3
; j 6¼ i: ð25Þ
The general form of the mass matrix for the proposed scheme reads:
mi;j ¼
jT j
3

bT ;1ð2� bT ;1Þ bT ;1ð1� bT ;2Þ bT ;1ð1� bT ;3Þ
bT ;2ð1� bT ;1Þ bT ;2ð2� bT ;2Þ bT ;2ð1� bT ;3Þ
bT ;3ð1� bT ;1Þ bT ;3ð1� bT ;2Þ bT ;3ð2� bT ;3Þ

2
64

3
75: ð26Þ
Two additional schemes can be obtained straightforwardly assuming either
aT ;i ¼ bT ;i; ð27Þ
or
aT ;i ¼ 1=3: ð28Þ

Combining Eqs. (11) and (17) one has:
jT jbT ;i

X3
j¼1

ci;jðu;tÞj ¼ aT ;i/
t
T : ð29Þ
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Eq. (29): (i) combined with condition (27) leads to ci,j = 1/3, providing a second-order-accurate scheme;

(ii) combined with condition (28) gives ci,j = 1/(9 bT,i), which violates Eq. (20) when bT,i = 0 so that the

scheme is only first-order-accurate. The mass matrices corresponding to the two schemes defined by Eqs.

(27) and (28) are given as:
mi;j ¼
jT j
3

bT ;1 bT ;1 bT ;1

bT ;2 bT ;2 bT ;2

bT ;3 bT ;3 bT ;3

2
64

3
75; ð30Þ

mi;j ¼
jT j
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

2
64

3
75: ð31Þ
For comparison, the consistent mass matrix derived in [14] is also reported here:
mi;j ¼
jT j
3

bT ;1 þ 1
6

bT ;1 � 1
12

bT ;1 � 1
12

bT ;2 � 1
12

bT ;2 þ 1
6

bT ;2 � 1
12

bT ;3 � 1
12

bT ;3 � 1
12

bT ;3 þ 1
6

2
64

3
75: ð32Þ
Such a matrix has been obtained in a finite element framework by employing linear shape functions, Ni, and

a test function, xi, defined as xi ¼ Ni þ bi � 1
3
.

In the present paper, the UCV space distribution coefficients have been used and the schemes obtained

employing Eqs. (25), (27) and (28) will be referred to as MM-CU (mass matrix-consistent upwind), MM-SU

(simple upwind), and MM-C (centred), respectively, whereas the scheme corresponding to matrix (32) will

be denoted as MM-PG (Petrov–Galerkin). Needless to say, the MM-C scheme is anticipated to be mark-

edly inferior to the other ones.
3. The proposed limiting procedure

The FCT strategy described in Section 2.2, although devised for explicit schemes, could be extended in

principle to implicit ones, by employing a dual-time-stepping technique. Unfortunately, due to the nonlin-

earity of the limiting procedure, the residual drop in the pseudo-time is limited to two/three orders of mag-

nitude. Therefore, a new limiting procedure is devised which overcomes such a difficulty by using the nodal

values of the lower- and higher-order solutions rather than the triangle contributions. The entire procedure
is described here in detail.

(1) For each node i of the domain, compute the lower-order, uloi , and higher-order, uhoi , solutions, and the

quantities:
u�i ¼
max

min
ðuloi ; uni Þ:

�

(2) For each element T, compute the quantities:
u�T ¼
max

min
u�j 8j 2 T :

�
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(3) For each node i, compute the quantities:
�u�i ¼
max

min
u�T 8T 2 Di;

�

namely, the extreme values that the solution may assume at node i, i.e., �u�i 6 unþ1
i 6 �uþi .
(4) For each node i, compute the quantities:
Du�i ¼
max

min
ð0; uhoi � �u�i Þ; ! Df �

i ¼ Du�i
jSij
Dt

:

�

Du�i are different from zero only if the higher-order solution, uhoi , lies outside the monotonicity bounds,
�u�i , and Df �

i are the corresponding fluxes. In order to have monotone solutions, all Du�i ðDf �
i Þ must

vanish. Update the solution as:

~ui ¼ uhoi � Df �
i

Dt
jSij

:

(5) For each node i, compute the quantities:
Du�i;max ¼
max

min
ð0; �u�i � ~uiÞ; ! Df �

i;max ¼ Du�i;max

jSij
Dt

:

�

Du�i;max are different from zero if the solution, ũi, lies within the prescribed bounds,
�u�i < ~ui < �uþi ; Df �

i;max are the associated flux variations over the median dual cell, which are the dis-

tances of the solution from the allowed monotonicity bounds.
(6) For each node i such that Df þ
i > 0 ðDf �

i < 0Þ, evaluate
F�
i;max ¼

X
j

Df �
j;max; j 2 Di; j 6¼ i;

which represent the fluctuation contributions that the nodes surrounding node i may receive without

violating the monotonicity constraints.

IfFþ

i;max P Df þ
i ðF�

i;max 6 Df �
i Þ, then redistribute Df �

i among the surrounding nodes, j, proportionally

to Df �
j;max:
Df �
ij ¼ Df �

i

Df �
j;max

F�
i;max

;

else,
Df �
ij ¼ Df �

j;max; R�
i ¼ Df �

i �F�
i;max:
Notice that Df �
i;max needs to be updated throughout every sweep as:
Df �
j;max ¼ Df �

j;max � Df �
ij ; j 2 Di; j 6¼ i:
Finally, update the solution as:
~uj ¼ uhoj þ ðDf þ
ij þ Df �

ij Þ
Dt
jSij

; j 2 Di; j 6¼ i;

where ũ = un + 1, when the entire domain has been swept. For the rare situations in which the quantity

R�
i is not equal to zero, it is distributed among the next row of neighbouring points according to the

criterion explained at point 6, namely proportionally to Df �
j;max.
The core of the proposed algorithm are steps 4 and 6: in step 4, for each dual cell, a flux difference asso-

ciated to the fraction of the correction which violates monotonicity is determined, whereas, in step 6, such a
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Fig. 4. Redistribution step.
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flux difference is distributed among the vertices of the dual cell as shown in Fig. 4. It is noteworthy that the

main merit of the proposed procedure is that the limiting strategy is imposed on residuals at each node, thus

allowing to reduce the unsteady residual at will, down to machine accuracy.

Finally, concerning the choice of the limiting lower-order scheme, the N scheme has been employed in all
computations performed in the present work, so that each limited scheme will be labelled by adding -N to

the label of the corresponding linear scheme. It is noteworthy that the implicit N-scheme of [24], which is

unconditionally stable and monotone, is used here in order to guarantee stable and monotone solutions for

CFL numbers greater than those allowed by explicit schemes. Such a scheme evaluates the residual at the

new time step while discretizing the pseudo-time derivative by a two-point difference and employing a

lumped mass matrix ðmi;j ¼ 1
3
jT jIÞ.
4. Extension to hyperbolic systems

4.1. Linear matrix FS schemes

The Euler equations are written in conservative form as:
oU
ot

¼ � oF
ox

� oG
oy

; ð33Þ
where
U ¼

q

qu

qv

qE

0
BBB@

1
CCCA; F ¼

qu

p þ qu2

quv

quH

0
BBB@

1
CCCA; G ¼

qv

quv

p þ qv2

qvH

0
BBB@

1
CCCA; ð34Þ
are the vectors of the conservative variables and of the fluxes in the x and y directions, respectively.

In order to apply the proposed FS scheme, Eq. (33) need to be rewritten in their quasi-linear form:
oU
ot

¼ � A
oU
ox

þ B
oU
oy

� �
; ð35Þ
where A = oF/oU and B = oG/oU are the Jacobian matrices. The computational domain is discretized by

linear finite elements (triangles).
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The conservative flux balance over each triangle T is defined as the fluctuation, UT,
UT ¼ �
Z
T

A
oU
ox

þ B
oU
oy

� �
dS: ð36Þ
The discrete counterpart of Eq. (36) requires a conservative linearization in order to compute shocks cor-

rectly. By assuming the parameter vector Z ¼ ffiffiffi
q

p ð1; u; v;HÞs to vary linearly over each triangle, the discrete

fluctuation can be evaluated analytically as:
UT ¼ � �A
oU
ox

þ �B
oU
oy

� �
jT j; ð37Þ
the bar indicating suitable cell-averaged values [9]. The fluctuation UT is then rewritten in terms of appro-

priate fluxes through the sides of each triangle (see [25,26], for details) as:
UT ¼ �
X3
j¼1

lj
2
�A � njUj ¼ �

X3
j¼1

KjUj; ð38Þ
where
Kj ¼
1

2
lj �Anx;j þ �Bny;j
� �

: ð39Þ
Due to the hyperbolic nature of the system, Kj can be written as
Kj ¼ ð�RK
�KK

�LKÞj ¼ ð�RK
�K
þ
K
�LKÞj þ ð�RK

�K
�
K
�LKÞj ¼ Kþ

j þ K�
j : ð40Þ
In Eq. (40), �RK;j and �LK;j are the right and left eigenvector matrices of Kj, whereas �K
þ
K;j and

�K
�
K;j are the cor-

responding positive and negative eigenvalue matrices. In such a way, it is possible to provide linear matrix

FS schemes for the Euler system, by extending the definition of the corresponding scalar ones, retaining the

same properties. In fact, introducing the following vector:
U in ¼
X3
j¼1

K�
j

 !�1 X3
j¼1

K�
j Uj

 !
; ð41Þ
the linear matrix N scheme [25,26] is obtained as:
UN
j ¼ �Kþ

j Uj � U in

� �
: ð42Þ
The non-upwind matrix FS-LW scheme does not require any splitting and is simply given as:
ULW
j ¼ 1

3
I þ Dt

2jT jKj

� �
UT : ð43Þ
Finally, the matrix UCV scheme is given as:
UUCV
j ¼ 1

3
I þ 2

3

X3
i¼1

jKij
 !�1

Kj

2
4

3
5UT ; ð44Þ
where jKij ¼ ð�RK j�KK j�LKÞi.
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4.2. The FCT explicit scheme

The FS-FCT scheme for the Euler system is obtained, like for the scalar case, as follows.

(1) For each node j of each element T, compute UN
j ; ULW

j , and
ACj ¼
Dt
jSjj

ULW
j � UN

j

	 

:

(2) For each node i of the domain, compute the lower-order solution as:
U lo
i ¼ Un

i þ
Dt
jSij

X
T

UN
T ;i:
(3) For each element, evaluate the scalar limiter rT as described in the previous section, replacing u with

any scalar dependent variable.

(4) For each node i of the domain, compute the final solution at the new time level n + 1 as follows:
Unþ1
i ¼ U lo

i þ
X
T2Di

rT AC
T
i :
It is noteworthy that different choices of the limiting scalar variable are possible. During this study, the den-

sity, the total internal energy per unit volume, and the magnitude of the solution vector have been used,

leading to only minor differences in the solutions. In all calculations presented in the result section, the

density has been used to evaluate the limiting factor rT.
4.3. Implicit scheme

The proposed implicit FS scheme is extended to the Euler equations, by generalizing the results of Eqs.

(11)–(25) as follows:
Ut
T ;i ¼ jT jbT ;j

X3
j¼1

Ci;j
oU
ot

� �
j

; ð45Þ
with
Ci;i ¼
1

3
2 I � bT ;i

� �
; Ci;j ¼

1

3
I � bT ;i

� �
; j 6¼ i; ð46Þ
where Ut
T ;i is the unsteady contribution sent to node i, and bT,i is the distribution matrix to node i. The lim-

iting procedure of Section 3 is applied to each single equation, straightforwardly.
5. Results

5.1. Scalar advection equation

Firstly, the accuracy of the proposed schemes has been tested by computing the advection of the double

sine wave function u(x,y,t)
uðx; y; 0Þ ¼ sinð2pxÞ sinð2pyÞ;

by the velocity k = (1,2)s, in the square domain [0,1]2, with periodic boundary conditions, up to time t = 1.

The computational domain has been discretized by uniform Cartesian grids, each quad-cell being divided
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by the right-running diagonal. Fig. 5 provides the exact solution at t = 1 on the Dx = Dy = 1/32 grid, the

dashed lines indicating negative values. Figs. 6–9 provide the corresponding numerical solutions obtained

using the FS-LW, MM-C, MM-SU, and MM-CU schemes, respectively. It appears that the MM-C scheme

is markedly more dissipative than the other ones which provide similar solutions. The solutions obtained by
the MM-PG and FS-FCT schemes are also very similar and are not reported for the sake of brevity. On the

other hand, a more thorough analysis has been performed by a mesh-refinement study, using six grids,

starting from Dx = Dy = 1/16, Dt = 0.02 and halving both the space and time steps. The L1 and L1 norms

of the solution error for both linear and nonlinear schemes are plotted in Figs. 10 and 11, respectively. Such

values are also provided in Tables 1 and 2 for easier comparison by other investigators. The mesh-refine-

ment study shows that the MM-C scheme is indeed only first-order-accurate, as anticipated, whereas the

others are second-order-accurate, the implicit schemes providing lower errors than the explicit ones. Fur-

thermore, for the present test-case, the proposed MM-CU and MM-CU-N schemes provide slightly higher
errors than those of the MM-SU and MM-SU-N schemes, respectively. The errors provided by the MM-

PG method, employing the UCV scheme, are also reported in Tables 1 and 2, and are very close to the ones
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of the MM-CU scheme. For such a simple test case, the errors obtained using the LDA scheme in conjunc-

tion with the MM-PG method (not shown) are not significantly different. It is noteworthy that, due to the

smoothness of the solution, the proposed limiting procedure does not affect second-order accuracy; on the

other hand, using the FS-FCT scheme the convergence of the L1 norm deteriorates when refining the mesh.

Then, a second well documented test problem, namely, the circular advection of a smooth hump, u(r,t)

has been considered:
uðr; 0Þ ¼ cos2ð2prÞ for r 6 0:25;

0 for r > 0:25;

�
ð47Þ
in the square domain [�1, 1]2, up to time t = 1, by the velocity k = (�2py,2px)s, where r2 = (x + 0.5)2 + y2.

The hump follows a circular path and returns to its initial position at t = 1. A mesh-refinement study has

been performed using a set of six structured grids (mesh C) and a set of six unstructured grids (mesh U).

The first set of computations has been performed starting from a grid with Dx = Dy = 1/16, Dt = 0.01 and
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halving both the space and time steps. The second set of computations has been performed starting from an

unstructured grid with 280 points, 494 triangular cells, Dt = 0.01, and dividing each triangle into four sub-
triangles introducing the mid-points of the edges as new vertices, while halving the time step. The L1 and

L1 norms of the solution error for the FS-LW, MM-C, MM-SU, MM-PG and MM-CU schemes are plot-

ted in Figs. 12 and 13, respectively. The mesh-refinement study confirms that the MM-C scheme is only

first-order-accurate, as anticipated, whereas the other schemes are second-order-accurate, the MM-PG

and MM-CU ones providing lower errors. It is noteworthy that using the LDA scheme instead of the

UCV one in conjunction with the MM-PG method, as originally proposed in [14], provides slightly higher

errors. It is clearly seen that the differences between the results obtained using the two sets of structured and
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Table 1

Double sine advection problem: accuracy study, L1 norm

16 · 16 32 · 32 64 · 64 128 · 128 256 · 256 512 · 512

FS-LW 2.689E � 1 7.845E � 2 2.005E � 2 5.030E � 3 1.258E � 3 3.146E � 4

MM-C 3.105E � 1 2.693E � 1 1.926E � 1 1.182E � 1 6.592E � 2 3.487E � 2

MM-SU 1.043E � 1 3.063E � 2 7.975E � 3 2.017E � 3 5.065E � 4 1.269E � 4

MM-CU 1.988E � 1 6.095E � 2 1.591E � 2 4.021E � 3 1.009E � 3 2.524E � 4

MM-PG 2.157E � 1 6.692E � 2 1.749E � 2 4.421E � 3 1.109E � 3 2.773E � 4

FS-FCT 2.605E � 1 7.630E � 2 1.977E � 2 5.045E � 3 1.271E � 3 3.177E � 4

FS-LW-N 2.686E � 1 7.844E � 2 2.005E � 2 5.029E � 3 1.258E � 3 3.146E � 4

MM-SU-N 1.053E � 1 3.072E � 2 7.984E � 3 2.018E � 3 5.066E � 4 1.269E � 4

MM-CU-N 1.987E � 1 6.093E � 2 1.591E � 2 4.021E � 3 1.009E � 3 2.524E � 4

Table 2

Double sine advection problem: accuracy study, L1 norm

16 · 16 32 · 32 64 · 64 128 · 128 256 · 256 512 · 512

FS-LW 4.891E � 1 1.405E � 1 3.586E � 2 8.992E � 3 2.249E � 3 5.624E � 4

MM-C 6.624E � 1 5.157E � 1 3.505E � 1 2.102E � 1 1.159E � 1 6.099E � 2

MM-SU 1.755E � 1 5.077E � 2 1.317E � 2 3.330E � 3 8.357E � 3 2.093E � 4

MM-CU 3.318E � 1 1.004E � 1 2.628E � 2 6.640E � 3 1.665E � 3 4.168E � 4

MM-PG 3.546E � 1 1.087E � 1 2.849E � 2 7.199E � 3 1.805E � 3 4.513E � 4

FS-FCT 4.931E � 1 1.449E � 1 3.692E � 2 9.017E � 3 4.279E � 3 1.817E � 3

FS-LW-N 4.935E � 1 1.402E � 1 3.587E � 2 8.993E � 3 2.249E � 3 5.624E � 4

MM-SU-N 1.744E � 1 5.093E � 2 1.317E � 2 3.330E � 3 8.357E � 3 2.093E � 4

MM-CU-N 3.329E � 1 1.004E � 1 2.628E � 2 6.640E � 3 1.665E � 3 4.168E � 4
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unstructured grids are quite negligible, confirming that fluctuation splitting schemes, due to their multidi-

mensional nature, are very well suited to unstructured grids. It is noteworthy that using the MM-CU

scheme with the 128 · 128-mesh C (31,616 elements for mesh U) one obtains about the same errors as

the explicit FS-LW scheme on the 512 · 512-mesh C (505,856 elements for mesh U). Considering that,

for such a test-case, the number of inner iterations needed to reduce the L1 norm of the unsteady residual

to 10�7 is about 10, the cost of the implicit computation is about 1/6.4 than that of the FS-LW scheme, for a

comparable accuracy. Needless to say, such an occurrence is problem dependent and by no means one can

state that the MM-CU scheme is six times more efficient than the FS-LW one, in particular for the Euler
system, see Section 5.2. The same test case has been solved employing two grids: a uniform Cartesian grid

with 89 · 89 quad-cells, divided into triangles by means of the right-running diagonals; and an unstructured

grid with 8061 nodes and 15,800 triangular cells, shown in Fig. 14. Such a grid contains about the same
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number of points (8079) and of triangular cells (15,836) employed in [19] for solving the same problem, so

that a direct comparison between the two solutions is possible. For both grids, the time step has been eval-

uated with respect to the unstructured mesh according to [19] as:
Dt ¼ 2

3
CFLmin

i

jT j
kþi

;

with CFL = 0.9, and is equal to 1.81 · 10�3. Figs. 16–25 provide the level lines of the solutions at t = 1 ob-
tained using the FS-LW, MM-C, MM-SU, MM-PG and MM-CU schemes, respectively; Fig. 15 shows the

exact solution, for comparison. Such figures confirm that the differences between the solutions obtained on

mesh U and mesh C are quite negligible. It appears that: the FS-LW scheme provides a significant phase

error; the MM-C scheme, due to its first-order accuracy, is clearly too dissipative; and the MM-SU, MM-

PG and MM-CU schemes provide very similar level lines. Moreover, the solutions of the MM-CU/UCV

(MM-PG/UCV) and MM-CU/LDA (MM-PG/LDA) schemes – not shown – are almost indistinguishable.

Figs. 26–29 provide the level lines obtained employing the FS-LW-N and MM-CU-N schemes. The solu-

tions obtained on mesh U and mesh C are again almost indistinguishable. Both schemes provide monotone
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Fig. 15. Rotating hump: exact solution at t = 1 (Du = 0.05).
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Fig. 17. Rotating hump: numerical solution at t = 1 using the FS-LW scheme and the structured grid (Du = 0.05).
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Fig. 18. Rotating hump: numerical solution at t = 1 using the MM-C scheme and the unstructured grid (Du = 0.05).
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Fig. 16. Rotating hump: numerical solution at t = 1 using the FS-LW scheme and the unstructured grid (Du = 0.05).
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Fig. 20. Rotating hump: numerical solution at t = 1 using the MM-SU scheme and the unstructured grid (Du = 0.05).
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Fig. 21. Rotating hump: numerical solution at t = 1 using the MM-SU scheme and the structured grid (Du = 0.05).
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Fig. 19. Rotating hump: numerical solution at t = 1 using the MM-C scheme and the structured grid (Du = 0.05).
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Fig. 22. Rotating hump: numerical solution at t = 1 using the MM-PG scheme and the unstructured grid (Du = 0.05).
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Fig. 23. Rotating hump: numerical solution at t = 1 using the MM-PG scheme and the structured grid (Du = 0.05).
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Fig. 24. Rotating hump: numerical solution at t = 1 using the MM-CU scheme and the unstructured grid (Du = 0.05).
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Fig. 25. Rotating hump: numerical solution at t = 1 using the MM-CU scheme and the structured grid (Du = 0.05).
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Fig. 26. Rotating hump: numerical solution at t = 1 using the FS-LW-N scheme and the unstructured grid (Du = 0.05).
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solutions, the MM-CU-N being clearly more accurate. Fig. 30 provides the vertical cuts of the solutions

through the exact centre of the hump, (�0.5,0), at t = 1, obtained on mesh U. The FS-LW solution shows

large oscillations and errors, whereas the MM-CU scheme provides markedly lower amplitude and phase

errors and very small oscillations. Moreover, the limiting procedure is seen to be effective in hampering

local extrema, the solutions obtained with the FS-LW-N and MM-CU-N schemes being monotone. How-

ever, the limiting procedure reduces the maximum value of the numerical solution as also shown in Table 3.

It is noteworthy that, for such a smooth solution, the present nonlinear procedure introduces less dissipa-

tion with respect to the nonlinear approach proposed in [19], as demonstrated by the results obtained using
the N-modified scheme, which were provided in [19] and are reported in the table.

Finally, the circular advection of a cylinder, u(r,t) in the square domain [�1,1]2 has been computed to

verify the monotonicity of the proposed schemes,
uðr; 0Þ ¼
1 for r 6 0:25;

0 for r > 0:25;

�
ð48Þ
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Fig. 27. Rotating hump: numerical solution at t = 1 using the FS-LW-N scheme and the structured grid (Du = 0.05).
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Fig. 28. Rotating hump: numerical solution at t = 1 using the FS-CU-N scheme and the unstructured grid (Du = 0.05).
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Fig. 29. Rotating hump: numerical solution at t = 1 using the FS-CU-N scheme and the structured grid (Du = 0.05).
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Fig. 31. Rotating cylinder: numerical solution at t = 1 using (a) the FS-LW-N scheme, (b) MM-CU-N scheme, (c) MM-SU-N scheme

(Du = 0.1).

Fig. 30. Rotating hump: vertical cut at t = 1 using the unstructured grid.

Table 3

Rotating hump: maximum and minimum value of the solution at t = 1

Scheme Min Max

FS-LW �0.1235 0.9511

MM-C �0.0035 0.4253

MM-SU �0.0488 0.9994

MM-PG �0.0298 0.9824

MM-CU �0.0237 0.9851

FS-LW-N 0 0.9215

MM-CU-N 0 0.9501

N-modified [19] 0 0.802
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where again r2 = (x + 0.5)2 + y2 and k = (�2py,2px)s. A uniform Cartesian grid has been employed

with 64 · 64 quad-cells, divided into triangles by means of the right-running diagonals. Fig. 31 provides

the level lines obtained at t = 1 (Dt = 0.0025) using the FS-LW-N, MM-CU-N and MM-SU-N
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schemes, respectively. The level lines obtained using the FS-FCT scheme (not reported) coincide

within plotting accuracy with those of the FS-LW-N one. Figs. 32 and 33 provide the corresponding
horizontal and vertical solution cuts through the exact centre of the cylinder (�0.5,0). The exact solu-

tion is also provided, for completeness. All schemes provide monotone solutions, the implicit ones

showing smaller dissipative and dispersive errors. It is noteworthy that the proposed MM-CU-N

scheme enjoys the lowest dispersive error. In order to verify the monotonicity of such schemes even

when employing larger time steps than that allowed by the explicit scheme, the previous test case

has been recomputed employing the following time steps: Dt = 0.005, Dt = 0.01, and Dt = 0.02,

corresponding to CFL numbers equal to 1.4, 2.8, and 5.6, respectively. Figs. 34 and 35 provide the

horizontal and vertical cuts of the solutions through the exact centre; the results of Figs. 32 and 33
and the exact profiles are also given for comparison. The figures clearly demonstrate that the solutions

remain monotone for increasing values of the time step, even when the (time) accuracy deteriorates

significantly.
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5.2. Euler equations

The accuracy of the proposed second-order schemes has been verified by computing the advection of
a two-dimensional vortex superposed to a uniform flow with ðq; u; v; pÞ ¼ ð1; ffiffiffi

c
p

; 0; 1Þ, with c = 1.4. The

vortex, at t = 0, is given in polar coordinates (r,h) as:
u� ¼ �reað1�s2Þ sin h;

v� ¼ ��reað1�s2Þ cos h;

T � ¼ � ðc� 1Þ�2
4a

e2að1�s2Þ;

ð49Þ
where s = r/0.05, � = 0.3, a = 0.204, and h is the counter-clockwise angle measured with respect to the hor-

izontal direction. The two-dimensional computations are performed on the [0,2] · [0,1] domain up to

t = 0.2, on a sequence of five grids, starting from Dx = Dy = 1/20 and Dt = 0.0125, and halving both the
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space and time steps. In Fig. 36, the L1 norm of the density errors, obtained with the FS-LW, FS-LW-N,

MM-CU, and MM-CU-N schemes, are provided. All schemes are second-order accurate, the implicit ones

providing markedly lower errors. It is noteworthy that, the solution being smooth, the limiting procedure

does not reduce the formal order of accuracy of the schemes. For comparison, results have also been ob-
tained using the consistent mass matrix of Eq. (32) and the distribution coefficients of the LDA scheme [4],

as proposed in [14]. The L1 norm of the density error is shown in Fig. 36 (see the curve labelled MM-PG).

The scheme is second-order accurate, as anticipated, but the errors appear greater that the ones provided by

the MM-CU scheme and comparable to those of the explicit scheme.

The previous test case has been then recomputed reducing the uniform flow speed by a factor 10
ffiffiffi
c

p
, con-

sidering (q,u,v,p) = (1,0.1,0,1). Therefore, two time scales become relevant for such a problem, associated

with the acoustic and advection speeds, respectively. Thanks to the great difference between such speeds,

a slow transient results, which is suitable for comparing the performance of implicit versus explicit schemes.
All computations have been performed using a grid with Dx = Dy = 1/80 for 0 6 t 6 5. In order to test the

stability and accuracy limits of the implicit MM-CU scheme, five values of CFLmax have been used, by

successively doubling the one corresponding to the stability limit of the explicit scheme. All results are pre-

sented in Table 4 which provides the L1 and L1 norms of the density error. It appears that the accuracy of

the implicit scheme is clearly superior to that of the explicit one; more importantly, the error of the implicit

scheme remains just about constant for values of the time step up to eight times larger than that allowed by
Table 4

Slow transient problem

FS-LW MM-CU

Dt 6.25E � 3 6.25E � 3 1.25E � 2 2.5E � 2 5.E � 2 10.E � 2

CFLmax 0.8 0.8 1.6 3.2 6.5 13

L1 1.291E � 4 4.229E � 5 4.346E � 5 4.149E � 5 5.147E � 5 1.256E � 4

L1 8.577E � 3 4.773E � 3 4.830E � 3 4.915E � 3 5.303E � 3 9.915E � 3
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the explicit scheme. Two considerations about the computational cost of the proposed implicit scheme are

in order: each inner iteration of the implicit scheme, using an explicit Euler smoother, costs about three

times one integration step of the cheapest explicit scheme, namely, the FS-LW one. The main additional

cost (per iteration) is due to the need of computing the inverses of the matrices Kj for each element when

using the UCV scheme (see Eq. (44)). Indicating with n the number of inner iterations needed to reduce
the unsteady residual to a suitable value, the overall computational cost of a simulation using the implicit

method, Cimp, with respect to the FS-LW scheme, Cexp, is given as:
Cimp ¼
3nDtexp
Dtimp

Cexp:
In the case of Table 4, for CFLmax = 13 one has about the same L1 error norm provided by the FS-LW

scheme; for such a computation n = 60 is needed to reduce the maximum L1 norm to 10�7, therefore
Cimp = 11.25Cexp. This is a rather discouraging result. However, the proposed method although not

competitive, as far as its efficiency is concerned, for solving inviscid flows, may well turn out to become

competitive for viscous flow computations, where stability is a much more relevant issue.
Fig. 37. Vortex–shock interaction: pressure contours at t = 0 (Dp = 0.02).

Fig. 38. Vortex–shock interaction: pressure contours at t = 0.2 using the FS-LW-N scheme (Dp = 0.02).

Fig. 39. Vortex–shock interaction: pressure contours at t = 0.4 using the FS-LW-N scheme (Dp = 0.02).



Fig. 40. Vortex–shock interaction: pressure contours at t = 0.2 using the MM-CU-N scheme (Dp = 0.02).

Fig. 41. Vortex–shock interaction: pressure contours at t = 0.4 using the MM-CU-N scheme (Dp = 0.02).
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In order to test the proposed schemes versus a non-smooth problem, the advection of the vortex of Eq.

(49) by a uniform supersonic flow
Fig.
ðq; u; v; pÞ ¼ ð1; 1:1 ffiffiffi
c

p
; 0; 1Þ ðM ¼ 1:1Þ;
impinging a steady vertical shock [19,27] has been computed in the [0,2] · [0,1] domain using 200 · 100

quad-cells and Dt = 0.0025. The pressure contours at the initial time are shown in Fig. 37. Figs. 38 and

39 provide the pressure contours at times t = 0.2 and t = 0.4, respectively, obtained using the FS-LW-N

scheme; whereas Figs. 40 and 41 show the corresponding solutions obtained using the MM-CU-N scheme.
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Due to its lower dissipative error, the implicit scheme is able to provide a sharper shock and a well

preserved vortex after the interaction (t = 0.4).

Finally, a very severe test-case has been considered, namely, the two-dimensional Riemann problem

studied in [28]. The initial solution consists of four constant values in four quadrants chosen so that each

pair of data gives a single shock wave, the interaction at the corner producing a complex structure, see [28]

for details. The problem has been solved in the square domain [0,1]2 on a grid with 200 · 200 quad-cells,

with Dt = 0.0016, up to the final time t = 0.8. Figs. 42–44 provide the density contours obtained using

the FS-FCT, FS-LW-N, and MM-CU-N schemes, respectively. All schemes provide sharp shocks and
contact lines, but it appears that only the novel implicit scheme captures the Kelvin–Helmholtz instabil-

ity of the slip lines already on this rather coarse grid, thanks to its low dissipative error. Notice that the
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MM-SU-N scheme fails for the present very difficult problem. Finally, Fig. 45 provides the solution

obtained using the second-order-accurate finite-volume method of Le Veque [28] without transverse prop-

agation, which represents a state-of-the-art scheme based on a direction-by-direction extension of one-

dimensional models. The comparison demonstrates the remarkable improvement achieved employing

genuinely multidimensional schemes, as also shown by Le Veque, who applies transverse propagation as

a multidimensional correction, see figure 6 in [28].
6. Conclusions

A novel implicit methodology has been proposed, which extends to unsteady problems fluctuation split-

ting schemes previously designed for steady equations. The formulation is based on the definition of a gen-

eral consistent mass matrix which guarantees second-order accuracy in space and time. Furthermore, a very

effective new limiting procedure has been developed which is combined with the above methodology to

achieve monotone solutions while locally introducing a very small dissipation. The method has been de-

signed for the scalar advection equation and then extended to the Euler system. It has been applied with
success to both scalar advection problems and very challenging compressible flow with shocks. Mesh refine-

ment studies demonstrate that the proposed schemes achieve second-order accuracy in space and time for

both the scalar advection equation and the Euler system. With respect to state-of-the-art methods for mul-

tidimensional unsteady advection problems, the proposed approach is characterized by a satisfactory

robustness, which allowed to reduce the unsteady residual to machine zero in all performed computations,

and very low dissipation especially in the nonlinear scheme. The drawback of the proposed approach lies in

its computational cost. Future work will be devoted to the extension of the method to viscous flow

computations where its merits in terms of stability may well render it competitive with current state-of-
the-art methods.
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